Evidence for a role of transmembrane protein p25 in localization of protein tyrosine phosphatase TC48 to the ER.
نویسندگان
چکیده
T-cell protein tyrosine phosphatase gives rise to two splice isoforms: TC48, which is localized to the endoplasmic reticulum (ER) and TC45, a nuclear protein. The present study was undertaken to identify proteins that are involved in targeting TC48 to the ER. We identified two TC48-interacting proteins, p25 and p23, from a yeast two-hybrid screen. p23 and p25 are members of a family of putative cargo receptors that are important for vesicular trafficking between Golgi complex and ER. Both p23 and p25 associate with overexpressed TC48 in Cos-1 cells as determined by coimmunoprecipitation. A significant amount of TC48 colocalized initially with ERGIC and Golgi complex markers (in addition to ER and nuclear membrane localization) and was then retrieved to the ER. Coexpression with p25 enhanced ER localization of TC48, whereas coexpression with p23 resulted in its trapping in membranous structures. Coexpression of a p25 mutant lacking the ER-localization signal KKxx resulted in enhanced Golgi localization of TC48. Forty C-terminal amino acid residues of TC48 (position 376-415) were sufficient for interaction with p23 (but not with p25) and targeted green fluorescence protein (GFP) to the Golgi complex. Targeting of GFP to the ER required 66 C-terminal amino acid residues of TC48 (position 350-415), which showed interaction with p25 and p23. We suggest that TC48 translocates to the Golgi complex along the secretory pathway, whereas its ER localization is maintained by selective retrieval enabled by interactions with p25 and p23.
منابع مشابه
UCSD MOLECULE PAGES Tyrosine-protein phosphatase non-receptor type 2
TC-PTP is a ubiquitous non-receptor type protein tyrosine phosphatase that shows highest expression in hematopoietic tissues. It regulates many signal transduction pathways in hematopoietic as well as non-hematopoietic cells. TCPTP has two splice variants, an endoplasmic reticulum-localized TC48, and predominantly nuclear TC45. Upon various stress conditions and insulin stimuli, TC45 comes out ...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملTC-PTP Dephosphorylates the Guanine Nucleotide Exchange Factor C3G (RapGEF1) and Negatively Regulates Differentiation of Human Neuroblastoma Cells
The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellu...
متن کاملEpidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase.
T-cell protein tyrosine phosphatase (TCPTP) exists as two forms generated by alternative splicing: a 48-kDa endoplasmic reticulum (ER)-associated form (TC48) and a 45-kDa nuclear form (TC45). To identify TCPTP substrates, we have generated substrate-trapping mutants, in which the invariant catalytic acid of TCPTP (D182) is mutated to alanine. The TCPTP D182A substrate-trapping mutants were tran...
متن کاملEpidermal Growth Factor Receptor and the Adaptor Protein p52 Are Specific Substrates of T-Cell Protein Tyrosine Phosphatase
T-cell protein tyrosine phosphatase (TCPTP) exists as two forms generated by alternative splicing: a 48-kDa endoplasmic reticulum (ER)-associated form (TC48) and a 45-kDa nuclear form (TC45). To identify TCPTP substrates, we have generated substrate-trapping mutants, in which the invariant catalytic acid of TCPTP (D182) is mutated to alanine. The TCPTP D182A substrate-trapping mutants were tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 119 Pt 9 شماره
صفحات -
تاریخ انتشار 2006